
PYTHON PROGRAMMING - IPYTHON PROGRAMMING - I

Chap - 5

Python Functions

And Modules

By-

Prof. A. P. Chaudhari

(M.Sc. Computer Science, SET)

HOD,

Department of Computer Science

S.V.S’s Dadasaheb Rawal College,

Dondaicha

Functions:

• In Python, a function is a group of related statements that performs a specific task.

• Functions help break our program into smaller and modular chunks. As our

program grows larger and larger, functions make it more organized and

manageable.

• A function is a block of organized, reusable code that is used to perform a single,

related action.

• A function is a block of code which only runs when it is called.

• You can pass data, known as parameters, into a function.

• A function can return data as a result.

• Furthermore, it avoids repetition and makes the code reusable.

• As you already know, Python gives you many built-in functions like print, etc. but

you can also create your own functions. These functions are called user-defined

functions.

Functions:

Defining a Function:

You can define functions to provide the required functionality. Here are

simple rules to define a function in Python.

• Function blocks begin with the keyword def followed by the function name

and parentheses ().

• Any input parameters or arguments should be placed within these

parentheses. You can also define parameters inside these parentheses.

• The first statement of a function can be an optional statement - the

documentation string of the function or docstring.

• The code block within every function starts with a colon : and is indented.

• The statement return [expression] exits a function, optionally passing back an

expression to the caller. A return statement with no arguments is the same as

return None.

Functions:

Syntax:

def functionname(parameters):

"function_docstring"

function_suite

return [expression]

By default, parameters have a positional behavior and you need to

inform them in the same order that they were defined.

Example:

The following function takes a string as input parameter and prints it on

standard screen.

def printme(str):

"This prints a passed string into this function"

print str

return

Functions:

Calling a Function:

Defining a function only gives it a name, specifies the parameters that

are to be included in the function and structures the blocks of code.

Once the basic structure of a function is finalized, you can execute it by

calling it from another function or directly from the Python prompt. Following is

the example to call printme function −

Function definition is here

def printme(str):

"This prints a passed string into this function"

print str

return;

Now you can call printme function

printme("I'm first call to user defined function!")

printme("Again second call to the same function")

O/P:- I'm first call to user defined function!

Again second call to the same function

Functions:
Pass by reference vs value:

All parameters arguments in the Python language are passed by

reference. It means if you change what a parameter refers to within a function,

the change also reflects back in the calling function. For example −

Function definition is here

def changeme(mylist):

"This changes a passed list into this function"

mylist.append([1,2,3,4]);

print "Values inside the function: ", mylist

return

Now you can call changeme function

mylist = [10,20,30];

changeme(mylist);

print "Values outside the function: ", mylist

Here, we are maintaining reference of the passed object and appending

values in the same object. So, this would produce the following result −

Values inside the function: [10, 20, 30, [1, 2, 3, 4]]

Values outside the function: [10, 20, 30, [1, 2, 3, 4]]

Functions:
There is one more example where argument is being passed by

reference and the reference is being overwritten inside the called function.

Function definition is here

def changeme(mylist):

"This changes a passed list into this function"

mylist = [1,2,3,4]; # This would assign new reference in mylist

print "Values inside the function: ", mylist

return

Now you can call changeme function

mylist = [10,20,30];

changeme(mylist);

print "Values outside the function: ", mylist

The parameter mylist is local to the function changeme. Changing mylist

within the function does not affect mylist. The function accomplishes nothing and

finally this would produce the following result −

Values inside the function: [1, 2, 3, 4]

Values outside the function: [10, 20, 30]

Functions:

Function Arguments:

You can call a function by using the following types of formal arguments −

1) Required arguments

2) Keyword arguments

3) Default arguments

4) Variable-length arguments

1) Required arguments:

Required arguments are the arguments passed to a function in correct

positional order. Here, the number of arguments in the function call should match

exactly with the function definition.

Functions:

To call the function printme, you definitely need to pass one argument, otherwise

it gives a syntax error as follows −

Function definition is here

def printme(str):

"This prints a passed string into this function"

print str

return;

Now you can call printme function

printme()

O/P:- Traceback (most recent call last):

File "test.py", line 11, in <module>

printme();

TypeError: printme() takes exactly 1 argument (0 given)

Functions:

2) Keyword arguments:

Keyword arguments are related to the function calls. When you use

keyword arguments in a function call, the caller identifies the arguments by the

parameter name.

This allows you to skip arguments or place them out of order because

the Python interpreter is able to use the keywords provided to match the values

with parameters. You can also make keyword calls to the printme function in the

following ways −

Function definition is here

def printme(str):

"This prints a passed string into this function"

print str

return;

Now you can call printme function

printme(str = "My string")

O/P:- My string

Functions:

The following example gives more clear picture. Note that the order of

parameters does not matter.

Function definition is here

def printinfo(name, age):

"This prints a passed info into this function"

print "Name: ", name

print "Age ", age

return;

Now you can call printinfo function

printinfo(age=50, name="miki")

O/P:- Name: miki

Age 50

Functions:

3) Default arguments:

A default argument is an argument that assumes a default value if a

value is not provided in the function call for that argument. The following example

gives an idea on default arguments, it prints default age if it is not passed −

Function definition is here

def printinfo(name, age = 35):

"This prints a passed info into this function"

print "Name: ", name

print "Age ", age

return;

Now you can call printinfo function

printinfo(age=50, name="miki")

printinfo(name="miki")

O/P:-

Name: miki

Age 50

Name: miki

Age 35

Functions:

4) Variable-length arguments:

You may need to process a function for more arguments than you

specified while defining the function. These arguments are called variable-length

arguments and are not named in the function definition, unlike required and

default arguments.

Syntax for a function with non-keyword variable arguments is this −

def functionname([formal_args,] *var_args_tuple):

"function_docstring"

function_suite

return [expression]

An asterisk ∗ is placed before the variable name that holds the values of all

nonkeyword variable arguments. This tuple remains empty if no additional

arguments are specified during the function call.

Functions:

Following is a simple example −

Function definition is here

def printinfo(arg1, *vartuple):

"This prints a variable passed arguments"

print "Output is: "

print arg1

for var in vartuple:

print var

return;

Now you can call printinfo function

printinfo(10)

printinfo(70, 60, 50)

O/P:-

Output is:

10

Output is:

70

60

50

Functions:

The Anonymous Functions:

These functions are called anonymous because they are not declared

in the standard manner by using the def keyword. You can use the lambda

keyword to create small anonymous functions.

• Lambda forms can take any number of arguments but return just one value in

the form of an expression. They cannot contain commands or multiple

expressions.

• An anonymous function cannot be a direct call to print because lambda

requires an expression

• Lambda functions have their own local namespace and cannot access

variables other than those in their parameter list and those in the global

namespace.

• Although it appears that lambda's are a one-line version of a function, they

are not equivalent to inline statements in C or C++.

Functions:

Syntax:

The syntax of lambda functions contains only a single statement, which is as

follows −

lambda [arg1 [,arg2,.....argn]] : expression

Following is the example to show how lambda form of function works −

Function definition is here

sum = lambda arg1, arg2: arg1 + arg2;

Now you can call sum as a function

print "Value of total : ", sum(10, 20)

print "Value of total : ", sum(20, 20)

O/P:- Value of total : 30

Value of total : 40

Functions:
The return Statement:

The statement return [expression] exits a function, optionally passing

back an expression to the caller. A return statement with no arguments is the

same as return None.

All the above examples are not returning any value. You can return a

value from a function as follows −

Function definition is here

def sum(arg1, arg2):

"Add both the parameters and return them."

total = arg1 + arg2

print "Inside the function : ", total

return total;

Now you can call sum function

total = sum(10, 20);

print "Outside the function : ", total

O/P:- Inside the function : 30

Outside the function : 30

Functions:

Scope of Variables:

All variables in a program may not be accessible at all locations in that

program. This depends on where you have declared a variable. The scope of a

variable determines the portion of the program where you can access a

particular identifier. There are two basic scopes of variables in Python −

• Global variables

• Local variables

Global vs. Local variables

Variables that are defined inside a function body have a local scope,

and those defined outside have a global scope.

This means that local variables can be accessed only inside the

function in which they are declared, whereas global variables can be accessed

throughout the program body by all functions. When you call a function, the

variables declared inside it are brought into scope.

Functions:

Following is a simple example −

total = 0; # This is global variable.

Function definition is here

def sum(arg1, arg2):

"Add both the parameters and return them."

total = arg1 + arg2; # Here total is local variable.

print "Inside the function local total : ", total

return total;

Now you can call sum function

sum(10, 20);

print "Outside the function global total : ", total

O/P:- Inside the function local total : 30

Outside the function global total : 0

Module:

A module is to be the same as a code library. A file containing a set of

functions you want to include in your application. A module is a file containing

Python definitions and statements. A module can define functions, classes and

variables.

A module allows you to logically organize your Python code. Grouping

related code into a module makes the code easier to understand and use. A module

is a Python object with arbitrarily named attributes that you can bind and reference.

Creating Module: To create a module just save the code you want in a file with file

extension .py

e.g: Write the following code and save file as module1.py

def fun1(name):

print ‘Hello ’, name

return

Module:

How to use module:

You can use any Python source file as a module by executing an import

statement in some other Python source file.

Syntax − import module1[, module2,... moduleN]

When the interpreter encounters an import statement, it imports the

module.

For example, to import the module module1.py, you need to put the following

command at the top of the script −

Import module module1

import module1

Now you can call defined function that module as follows

module1.fun1(“Parth")

O/P: Hello Parth

Module:

Variables in module:

The module can contain functions, as already described, but also

variables of all types (arrays, dictionaries, objects etc).

e.g.: Following code save in module1.py file.

person1 = {'Name':'Hitesh', 'Age':25, 'City':'Pune'}

Import the module named module1, and access the person1 dictionary:

import module1

a = z1.person1['Age']

print 'Age:', a

O/P: Age: 25

Module:

Built-in Modules:

A large number of pre-defined functions are also available as a part of

libraries bundled with Python distributions. These functions are defined in

modules. A module is a file containing definitions of functions, classes, variables

or any other Python objects. Contents of this file can be made available to any

other program.

There are several built-in modules in Python, which you can import

whenever you like. They are loaded automatically as the interpreter starts and are

always available.

e.g.: import platform

a = platform.system()

print a

O/P: Windows

Module:

1) OS Module:

It is possible to automatically perform many operating system tasks. The

OS module in Python provides functions for creating and removing a directory

(folder), fetching its contents, changing and identifying the current directory, etc.

i) Creating Directory:

We can create a new directory using the mkdir() function from the OS

module.

e.g.: import os

os.mkdir("D:\Demo1")

A new directory corresponding to the path in the string argument of the

function will be created. If we open D drive, we should notice Demo1 folder

created.

Module:

ii) Fetching contents from directory:

Python method listdir() returns a list containing the names of the entries

in the directory given by path.

e.g.: import os

files = os.listdir("D:\ICT")

for f in files:

print f

O/P: 01 Syllabus

02 Reference Book

03 TrainingPPTs Sessionwise

04 WorkBook

05 TrainingSoftwares

untitled.bmp

Module:

iii) Remove Directory:

Python method removedirs() removes directories recursively. If the leaf

directory is successfully removed, removedirs() tries to successively remove

every parent directory displayed in path.

e.g.: import os

os.removedirs("D:\Demo1")

Module:

2) Math module:

Python math module is defined as the most famous mathematical

functions, which includes trigonometric functions, representation functions,

logarithmic functions, etc. Furthermore, it also defines two mathematical

constants, i.e., Pie and Euler number, etc.

Pie (n): It is a well-known mathematical constant and defined as the ratio of

circumstance to the diameter of a circle. Its value is 3.141592653589793.

e.g.: import math

print(math.pi) O/P: 3.14159265359

Euler's number(e): It is defined as the base of the natural logarithmic, and its

value is 2.718281828459045.

e.g.: import math

print(math.e) O/P: 2.71828182846

Module:

i) log10(): This method returns base 10 logarithm of the given number and called

the standard logarithm.

e.g.: import math

x=13

print 'log10(13) is :', math.log10(x)

O/P: log10(13) is : 1.11394335231

ii) pow(x,y): This method returns the power of the x corresponding to the value of

y. If value of x is negative or y is not integer value than it raises a ValueError.

e.g.: import math

number = math.pow(10,2)

print "The power of number:",number

O/P: The power of number: 100.0

Module:

iii) floor(x): This method returns the floor value of the x. It returns the less than or

equal value to x.

e.g.: import math

number = math.floor(10.25201)

print "The floor value is:",number

O/P: The floor value is: 10.0

iv) ceil(x): This method returns the ceil value of the x. It returns the greater than

or equal value to x.

e.g.: import math

number = math.ceil(10.25201)

print "The Ceilling value is:",number

O/P: The Ceilling value is: 11.0

